El código del genoma humano por fin está completo

(Por Gabrielle Hartley, University of Connecticut) Cuando el Proyecto Genoma Humano anunció que había completado el primer genoma humano en 2003, fue un logro trascendental: por primera vez se descifró el código del ADN de la vida humana. Pero había un inconveniente, y es que no se consiguió reunir toda la información del genoma. Existían lagunas, regiones sin rellenar, a menudo repetitivas, que resultaban demasiado confusas para unirlas.

Image description

Gracias a los avances en la tecnología para manejar estas secuencias repetitivas, los científicos finalmente llenaron esos vacíos en mayo de 2021, y el primer genoma humano completo ha sido publicado oficialmente el 31 de marzo de 2022.

Soy una bióloga experta en genética que estudia las secuencias repetitivas de ADN y cómo dan forma a los genomas a lo largo de la historia evolutiva. Formé parte del equipo que ayudó a caracterizar las secuencias repetitivas que faltaban. Y ahora, con un genoma humano completo, esas regiones repetitivas se están explorando por primera vez en su totalidad.

Las piezas del puzzle que faltaban

El botánico alemán Hans Winkler acuñó la palabra “genoma” en 1920, combinando la palabra “gen” con el sufijo “-ome” (en inglés es genome), que significa “conjunto completo”, para describir la secuencia completa de ADN que contiene cada célula. Los investigadores siguen utilizando esta palabra un siglo después para referirse al material genético que compone un organismo.

Una forma de describir el aspecto de un genoma es compararlo con un libro de consulta. En esta analogía, un genoma es una antología que contiene las instrucciones del ADN para la vida. Se compone de una amplia gama de nucleótidos (letras) que se empaquetan en cromosomas (capítulos). Cada cromosoma contiene genes (párrafos) que son regiones de ADN que codifican las proteínas específicas que permiten el funcionamiento de un organismo.

Diagrama de un cromosoma que desvela el ADN enrollado, los genes y los nucleótidos que lo componen
El material genético está formado por ADN empaquetado estrechamente en cromosomas. Solo algunas regiones del genoma contienen genes que codifican proteínas. VectorMine / iStock via Getty Images Plus

Aunque todo organismo vivo tiene un genoma, su tamaño varía de una especie a otra. Un elefante utiliza la misma forma de información genética que la hierba que come y las bacterias de su intestino. Pero no hay dos genomas exactamente iguales. Algunos son cortos, como el genoma de la bacteria que habita en los insectos Nasuia deltocephalinicola, con solo 137 genes en 112 000 nucleótidos. Otros, como los 149 000 millones de nucleótidos de la planta con flores Paris japonica, son tan largos que resulta difícil hacerse una idea de cuántos genes contienen.

No obstante, los genes, tal y como se entienden tradicionalmente como tramos de ADN que codifican proteínas, constituyen solo una pequeña parte del genoma de un organismo. De hecho, suponen menos del 2 % del ADN humano.

El genoma humano contiene aproximadamente 3 000 millones de nucleótidos y algo menos de 20 000 genes que codifican proteínas, lo que representa un 1 % de la longitud total del genoma.

El 99 % restante son secuencias de ADN no codificantes que no producen proteínas. Algunas son componentes reguladores que funcionan como una centralita para controlar el funcionamiento de otros genes. Otras son pseudogenes o reliquias genómicas que han perdido su capacidad de funcionamiento.

Y más de la mitad del genoma humano es repetitivo, con múltiples copias de secuencias casi idénticas.

¿Qué es el ADN repetitivo?

La forma más sencilla de ADN repetitivo son los bloques de ADN que se repiten una y otra vez en tándem, llamados satélites. Aunque la cantidad de ADN satélite que tiene un determinado genoma varía de una persona a otra, suelen agruparse hacia los extremos de los cromosomas en regiones llamadas telómeros. Estas regiones protegen a los cromosomas de la degradación durante la replicación del ADN. También se encuentran en los centrómeros de los cromosomas, una región que ayuda a mantener intacta la información genética cuando las células se dividen.

Los investigadores aún no conocen bien todas las funciones del ADN satélite. Pero como forma patrones únicos en cada persona, los biólogos forenses y los genealogistas utilizan esta huella genómica para cotejar muestras de la escena del crimen y rastrear la ascendencia. Más de 50 trastornos genéticos están relacionados con variaciones en el ADN satélite, incluida la enfermedad de Huntington.

46 cromosomas humanos coloreados en azul con telómeros blancos contra una pantalla negra
El ADN satélite tiende a agruparse hacia los extremos de los cromosomas en sus telómeros. Aquí, 46 cromosomas humanos están coloreados en azul, con telómeros blancos. NIH Image Gallery / Flickr, CC BY-NC

Otro tipo abundante de ADN repetitivo son los elementos transponibles o secuencias que pueden desplazarse por el genoma.

Algunos científicos los han descrito como ADN “egoísta” porque pueden insertarse en cualquier lugar del genoma, sin importar las consecuencias. A medida que el genoma humano evolucionó, muchas secuencias transponibles recogieron mutaciones, reprimiendo su capacidad de moverse para evitar interrupciones perjudiciales. Pero es probable que algunas sigan moviéndose. Por ejemplo, las inserciones de elementos transponibles están relacionadas con varios casos de hemofilia A, un trastorno hemorrágico genético.

Pero los elementos transponibles no son solo disruptivos. Pueden tener funciones reguladoras que ayudan a controlar la expresión de otras secuencias de ADN. Cuando están concentrados en los centrómeros, también pueden ayudar a mantener la integridad de los genes fundamentales para la supervivencia celular.

Asimismo, pueden contribuir a la evolución. Los investigadores han descubierto recientemente que la inserción de un elemento transponible en un gen importante para el desarrollo podría ser la razón por la que algunos primates, incluidos los humanos, ya no tienen cola. Los reordenamientos cromosómicos debidos a elementos transponibles están incluso vinculados a la génesis de nuevas especies como los gibones del sudeste asiático y los wallabies de Australia.

Completar el rompecabezas genómico

Hasta hace poco, muchas de estas complejas regiones podían compararse con la cara oculta de la luna: se sabía que existían, pero no se veían.

Cuando el Proyecto Genoma Humano se puso en marcha por primera vez en 1990, las limitaciones tecnológicas impedían descubrir por completo las regiones repetitivas del genoma. La tecnología de secuenciación disponible solo podía leer unos 500 nucleótidos a la vez, y estos fragmentos cortos tenían que superponerse unos a otros para recrear la secuencia completa. Los investigadores utilizaron estos segmentos superpuestos para identificar los siguientes nucleótidos de la secuencia, ampliando gradualmente el ensamblaje del genoma de a un fragmento por vez.

Estas regiones repetitivas de lagunas eran como armar un rompecabezas de 1 000 piezas de un cielo nublado: cuando todas las piezas son iguales, ¿cómo saber dónde empieza una nube y dónde acaba otra? Con tramos casi idénticos que se solapan en muchos puntos, la secuenciación completa del genoma por partes se hizo inviable. En la primera iteración del genoma humano quedaron ocultos millones de nucleótidos.

Desde entonces, los parches de secuencias han ido rellenando poco a poco las lagunas del genoma humano. Y en 2021, el Consorcio Telómero a Telómero (T2T), un consorcio internacional de científicos que trabajan para completar un ensamblaje del genoma humano de extremo a extremo, anunció que todas las lagunas restantes fueron finalmente llenadas.

Con la finalización del primer genoma humano, los investigadores se proponen ahora capturar toda la diversidad de la humanidad.

Esto ha sido posible gracias a la mejora de la tecnología de secuenciación, capaz de leer secuencias más largas de miles de nucleótidos. Con más información para situar las secuencias repetitivas dentro de un panorama más amplio, resultó más fácil identificar su lugar adecuado en el genoma. Como si se simplificara un rompecabezas de 1 000 piezas a un rompecabezas de 100 piezas, las secuencias de lectura larga hicieron posible ensamblar grandes regiones repetitivas por primera vez.

Gracias a la creciente potencia de la tecnología de secuenciación de ADN de lectura larga, los genetistas están en condiciones de explorar una nueva era de la genómica, desentrañando por primera vez complejas secuencias repetitivas en poblaciones y especies. Y un genoma humano completo y sin lagunas constituye un recurso inestimable para que los investigadores estudien las regiones repetitivas que conforman la estructura y la variación genéticas, la evolución de las especies y la salud humana.

Pero un genoma completo no lo recoge todo. Se siguen realizando esfuerzos para crear diversas referencias genómicas que representen plenamente la población humana y la vida en la Tierra. Con referencias genómicas más completas, “telómero a telómero”, la comprensión de los científicos de la materia oscura repetitiva del ADN será más clara.

Gabrielle Hartley, PhD Candidate in Molecular and Cell Biology, University of Connecticut

Este artículo fue publicado originalmente en The Conversation. Lea el original.

The Conversation

Tu opinión enriquece este artículo:

El stand de Cataluña en la feria internacional B-Travel 2025 gira en torno a la distinción como Región Mundial de la Gastronomía 2025

El stand de Cataluña en la feria internacional B-Travel 2025 gira en torno a la distinción de nuestro país como Región Mundial de la Gastronomía 2025. La directora general de Turismo, Cristina Lagé, ha inaugurado hoy este salón de experiencias turísticas que tiene lugar hasta el domingo 30 de marzo en el recinto Montjuïc de Fira de Barcelona. En su inauguración le han acompañado el director general de Turespaña, Miguel Ángel Sanz; el director general de Fira de Barcelona, ​​Constantí Serrallonga; el presidente de B-Travel, Martí Sarrate; la directora del salón, Marta Serra; y la directora de la Agencia Catalana de Turismo, Arantxa Calvera.

Empleados de AstraZeneca reforestan bosques en Sant Martí de Tous, Barcelona

AstraZeneca y Bosquea han celebrado la jornada de voluntariado 'hAZiendo horizonte juntos', en la que ha reunido un medio centenario de trabajadores de la compañía farmacéutica para contribuir a la regeneración de bosques en Sant Martí de Tous, Barcelona. Esta actividad marca un paso crucial en su proyecto de plantación de especies autóctonas en la zona, con el que esperan alcanzar un total de 2.200 árboles y compensar 190 toneladas de CO 2 a lo largo de los próximos 50 años.

Cataluña gestiona 55 planes de sostenibilidad turística con más de 200 millones de euros de inversión en todo el territorio

El consejero de Empresa y Trabajo, Miquel Sàmper, y el ministro de Industria y Turismo, Jordi Hereu, han abierto hoy una jornada interna para explicar el grado de ejecución de los 55 planes de sostenibilidad turística en destino que actualmente están en marcha en las comarcas catalanas. La sesión, celebrada en La Pedrera, también contó con la participación la directora general de Turismo de la Generalidad de Cataluña, Cristina Lagé, así como de la secretaria de Estado de Turismo, Rosario Sánchez, y de la directora general de Políticas Turísticas, Ana Muñoz, por parte del Ministerio.

La facturación de las empresas catalanas dedicadas a la industria 4.0 crece un 29,3% en cuatro años, hasta los 7.200 millones de euros

Las empresas catalanas dedicadas a la industria 4.0 facturan de forma agregada 7.197 millones de euros, un 29,3% más que en 2021, según se desprende de un estudio de ACCIÓ -la agencia para la competitividad de la empresa del Departamento de Empresa y Trabajo-. De acuerdo con este informe, el volumen de negocio de la industria 4.0 equivaldría ya al 2,6% del PIB catalán.

TRC abre nueva filial en Cataluña para impulsar la ciberseguridad y defensa poniendo al frente a Diego Presa

TRC, empresa líder en ciberseguridad con capital 100% nacional, anuncia la inversión en Cataluña con la apertura de TRC CAT. El principal objetivo es fortalecer la presencia y ofrecer soluciones avanzadas en el ámbito de la seguridad, fronteras inteligentes, ciberdefensa y transformación digital a las Administraciones Públicas y empresas privadas. TRC réplica así el exitoso modelo de cercanía iniciado en el País Vasco con TRC Bat.

Eurofins completa con éxito la adquisición de las operaciones de análisis clínicos de Synlab en España

Eurofins Scientific (EUFI.PA), líder científico global en pruebas bioanalíticas, con fuerte presencia y rápido desarrollo en el segmento de las pruebas de diagnóstico clínico y moleculares altamente especializadas, y productos de diagnóstico in vitro, completa con éxito la adquisición de las operaciones de análisis clínicos de Synlab en España que se ha hecho efectiva con fecha 31 de marzo de 2025.

Palo para Apple: Francia multa con 150 millones de euros a la compañía por abuso de posición dominante en la publicidad de apps móviles

La Autoridad de la Competencia de Francia ha multado a Apple con 150 millones de euros "por abusar de su posición dominante" en el sector para la distribución de aplicaciones móviles en dispositivos iOS y iPadOS entre abril de 2021 y julio de 2023 en relación con la implementación del sistema de Transparencia de Seguimiento de Aplicaciones (ATT) de la multinacional.

Éste sitio web usa cookies, si permanece aquí acepta su uso. Puede leer más sobre el uso de cookies en nuestra política de cookies.