Ni mágicos ni los más veloces: mitos y realidades sobre los ordenadores cuánticos

(Por Elías F. Combarro, Universidad de Oviedo) En octubre de 2019, la computación cuántica acaparó durante varios días titulares de noticias en todo el mundo. Un equipo de investigadores del gigante tecnológico Google había conseguido alcanzar la supremacía cuántica, venciendo a los supercomputadores más grandes del planeta con un ordenador cuántico. No solo eso, sino que la diferencia de tiempos resultaba sencillamente apabullante: unos pocos minutos frente a los miles de años necesarios para realizar el mismo cálculo con un ordenador tradicional.

Image description

Decenas de artículos y reportajes en prensa, radio y televisión se hicieron eco de este hito histórico e intentaron explicar al público no especializado en qué consistía realmente el logro de Google y qué eran esos misteriosos ordenadores cuánticos que se habían utilizado para conseguirlo. Pese a su buena intención, la mayor parte de estas explicaciones deben haber sembrado más dudas que las que consiguieron aclarar.

Nada de magia ni fantásticos superpoderes

En los artículos de divulgación sobre computación cuántica es habitual encontrar una serie de analogías e imágenes recurrentes que no se corresponden con la realidad y que contribuyen a crear falsos mitos alrededor de las verdaderas capacidades de los ordenadores cuánticos.

Una de las más repetidas es aquella de que “un ordenador cuántico encuentra la solución a un problema probando simultáneamente todas las opciones posibles”. Esta explicación no simplifica en demasía el funcionamiento de los computadores cuánticos. Más bien parece dotarlos de fantásticos superpoderes mediante los que completar cualquier cálculo es cuestión de pulsar un botón y esperar unos pocos segundos.

Pero, entonces, ¿no es cierto que un ordenador cuántico usa un paralelismo masivo para explorar, al mismo tiempo, todas las soluciones de un problema? Como en muchas cosas que tienen que ver con el mundo cuántico, la respuesta es, a la vez, sí y no. Es verdad que una de las principales propiedades en las que se apoyan los algoritmos cuánticos es la superposición, esa misteriosa tendencia de ciertos sistemas físicos a encontrarse en una combinación de varios estados distintos. Pero esa es únicamente una parte, y bastante pequeña, de toda la historia.

Podríamos definir la computación cuántica como la disciplina que estudia el uso de las propiedades de las partículas subatómicas para realizar cálculos. Entre estas propiedades se encuentra, sí, la superposición, pero también el entrelazamiento y la interferencia.

En cierta forma, podríamos decir que un algoritmo cuántico primero crea una superposición de muchas posibilidades a explorar, luego entrelaza estas posibilidades con sus resultados y, finalmente, consigue que las soluciones malas interfieran entre sí para que solo sobrevivan aquellas que nos interesan.

Esta fase de aniquilar opciones desfavorables es la parte más difícil y delicada de todo el proceso. Se trata de una especie de compleja coreografía matemática, por usar las palabras de Scott Aaronson y Zach Weinersmith, que solo sabemos llevar a cabo en algunos problemas concretos. Es más, hace tiempo que se ha demostrado que en determinadas tareas no es posible aprovechar la computación cuántica para conseguir acelerar los cálculos con respecto a los ordenadores tradicionales.

Un ordenador cuántico no es, por tanto, ese dispositivo mágico capaz de resolver al instante cualquier problema que a veces nos quiere vender la prensa sensacionalista. Pero tampoco es, simplemente, un ordenador más rápido.

DAQ / Telos

No solo más rápidos

Otra de las falacias que es habitual encontrar en los artículos populares sobre ordenadores cuánticos es la reducción de todas sus capacidades a un mero incremento de velocidad. He perdido la cuenta de la cantidad de ocasiones en las que me he encontrado explicaciones como “científicos desarrollan un ordenador cuántico un millón de veces más rápido que los ordenadores tradicionales”. Por llamativas que puedan resultar estas afirmaciones, son totalmente erróneas.

Estamos acostumbrados a que, cada pocos meses, los grandes fabricantes de microchips anuncien nuevos desarrollos que consiguen ser un veinte, un treinta o un cincuenta por ciento más veloces que sus predecesores. Pero un ordenador cuántico no basa su funcionamiento en un simple avance en la tecnología que permita hacer las mismas operaciones de forma más rápida.

Por un lado, es posible que para algunas tareas un ordenador cuántico no supere en velocidad a un ordenador clásico. Pero es que en los casos en los que un computador cuántico ofrece una ventaja sobre los dispositivos tradicionales, las diferencias no se pueden medir con un único número.

Un ordenador cuántico ejecuta algoritmos radicalmente diferentes de los que usa un ordenador clásico. Esto hace que la ventaja del dispositivo cuántico crezca más cuanto más grande sea el tamaño del problema que queremos resolver. Por ejemplo, para problemas de búsqueda en listas, un ordenador cuántico será cinco veces más rápido que uno tradicional con cien datos, cincuenta veces más rápido con diez mil elementos y quinientas veces más rápido con un millón de registros.

Aplicaciones

Es precisamente este aumento de la ventaja de los ordenadores cuánticos al crecer el tamaño de los datos a procesar lo que los hace especialmente atractivos a la hora de abordar problemas que son intratables con ordenadores tradicionales. Es el caso de tareas como encontrar los factores de números enteros muy grandes, en cuya dificultad se basa la seguridad de muchos de los protocolos de cifrado que se usan en nuestras comunicaciones digitales.

El tiempo necesario para resolver este problema utilizando los mejores algoritmos clásicos disponibles crece casi exponencialmente con la longitud de los números, por lo que aumentar en unas pocas decenas de bits el tamaño de una clave la haría millones de veces más segura. Sin embargo, el matemático Peter Shor demostró hace más de veinte años que romper este tipo de cifrado sería viable en la práctica si se usaran algoritmos cuánticos.

La criptografía no es el único campo en el que los ordenadores cuánticos pueden ofrecer una gran ventaja con respecto a la computación tradicional. Por ejemplo, la simulación de nuevos materiales o el estudio de compuestos químicos son dos de las aplicaciones más prometedoras de la computación cuántica. Se trata, nuevamente, de tareas extremadamente difíciles para los ordenadores clásicos porque el número de parámetros que describen el comportamiento de los sistemas físicos y químicos crece exponencialmente con la cantidad de partículas que los componen. Pero las propiedades cuánticas de este tipo de sistemas hacen que su simulación con ordenadores cuánticos resulte natural, como señaló el físico Richard Feynman incluso antes de que la computación cuántica existiera como disciplina científica.

Así, son muchos los investigadores que en los últimos años han desarrollado algoritmos específicamente pensados para estudiar propiedades de moléculas químicas mediante ordenadores cuánticos. Uno de los más famosos es el llamado Variational Quantum Eigensolver (VQE), que presenta la particularidad de poder ser usado incluso con los ordenadores cuánticos pequeños y sensibles al ruido de los que disponemos hoy en día.

Con este método, se ha conseguido simular en hardware cuántico real algunas moléculas de tamaño reducido, alcanzando una precisión equivalente a la de los cálculos clásicos. Aunque aún estamos lejos de superar a los ordenadores tradicionales en esta tarea, el ritmo de crecimiento de las capacidades de los computadores cuánticos y las mejoras en los algoritmos que se utilizan nos hacen suponer que posiblemente esta sea una de las primeras aplicaciones prácticas de la tecnología.

DAQ / Telos

Computación cuántica e inteligencia artificial

Otros campos en los que la investigación de las aplicaciones de la computación cuántica es especialmente intensa en la actualidad son la inteligencia artificial y la optimización. En concreto, son varios los algoritmos cuánticos que se han propuesto para acelerar las tareas implicadas en el entrenamiento de modelos de machine learning a partir de grandes colecciones de datos.

En algunos casos, con técnicas parecidas a las empleadas por Shor en el desarrollo de su algoritmo de factorización, se consigue una ganancia exponencial con respecto al correspondiente método clásico. Sin embargo, puesto que debemos trasladar uno a uno los datos al ordenador cuántico desde los ficheros en que se almacenan, el cuello de botella se encontraría no en el procesamiento de la información, sino en la lectura de la misma. Posibles soluciones serían el uso de datos captados directamente con sensores cuánticos, lo que evitaría tener que cargarlos desde un dispositivo externo, y el desarrollo de memorias cuánticas que permitan leer datos en superposición.

Además del estudio de técnicas para acelerar los procesos del aprendizaje automático clásico, también se investigan modelos puramente cuánticos como, por ejemplo, las llamadas redes neuronales cuánticas. Puesto que estas propuestas son relativamente recientes, no se conocen aún todas sus capacidades, pero se dispone de evidencias que muestran que su rendimiento es superior al de los métodos clásicos con ciertos conjuntos de datos creados de forma artificial.

Como bien ha señalado John Preskill, uno de los mayores expertos en computación cuántica del mundo, del mismo modo que las aplicaciones de las redes neuronales clásicas se han ido desarrollando sin necesidad de tener, en todos los casos, una teoría sólida y exhaustiva que las sustentara, el aumento en la disponibilidad de ordenadores cuánticos en los que ejecutar y ajustar redes neuronales cuánticas muy posiblemente conducirá a encontrar casos de uso que hoy no podemos prever.

Los ordenadores cuánticos no son la solución a todos los problemas computacionales y de tratamiento de datos que podamos plantear. No son dispositivos mágicos con los que se pueda realizar instantáneamente cualquier cálculo. Pero tampoco son solamente versiones más rápidas de los ordenadores de los que disponemos hoy. En las tareas en las que es posible obtener una ventaja mediante el uso de la computación cuántica, la ganancia en tiempo de ejecución aumenta cuando el tamaño del problema se hace más grande.

Si tenemos en cuenta que las aplicaciones de los ordenadores cuánticos incluyen campos de tanta relevancia como la ciberseguridad, la simulación de procesos físicos y químicos o la inteligencia artificial, el hecho de que la computación cuántica no sea una herramienta que sirva para todo no disminuye su valor sino que simplemente lo matiza. Disponer de ordenadores cuánticos no significará el fin de nuestras limitaciones de cómputo, pero podemos dar por seguro que supondrá un profundo cambio en nuestra forma de calcular y procesar datos y, por tanto, una transformación radical de nuestra sociedad.


La versión original de este artículo fue publicada en el número 119 de la Revista Telos de Fundación Telefónica.


Elías F. Combarro, Profesor titular del Departamento de Informática, Universidad de Oviedo

Este artículo fue publicado originalmente en The Conversation. Lea el original.

The Conversation

Tu opinión enriquece este artículo:

Irse a vivir de alquiler hoy supone destinar más del 35% de los ingresos familiares (y Baleares, madrileños y catalanes registran la mayor tasa de esfuerzo para cumplir con el alquiler)

En España, alrededor del 18% de las familias actualmente vive de alquiler. Sin embargo, quienes decidan optar por esta modalidad habitacional hoy se enfrentan a un panorama complicado: en las condiciones actuales del mercado inmobiliario, el alquiler representa más del 35% de los ingresos netos familiares, según un análisis de la consultora AIS, parte del grupo PFSTECH y especialista en big data y analytics. 

Las empresas catalanas han recibido más de 1.500 millones de euros de los fondos Next Generation desde 2021

El consejero de Empresa y Trabajo, Miquel Sàmper, ha anunciado hoy que "las empresas catalanas han captado 1.540millones de euros desde 2021 en el conjunto de convocatorias competitivas de alcance estatal de los fondos Next Generation" , destacando ámbitos sectoriales como la movilidad sostenible (30%) o los proyectos de I+D (29%). Sàmper ha hecho público el balance de captación de los tres años de estos fondos europeos, durante la inauguración del tercer Congreso de la Asociación TECNIO en Terrassa.

Barcelona afianza su posición internacional mientras redefine su imagen global

El último informe de la consultora de comunicación y estrategia digital, evercom, sobre La percepción de Barcelona a nivel internacional revela un aumento exponencial en la presencia digital de la ciudad. Este análisis tiene el objetivo de compartir cuál es la visión que se tiene en la actualidad sobre la ciudad, a través de un análisis reputacional que sirva como guía sobre cómo las prácticas y proyectos que se producen en la misma relanzan su imagen.

De los jamones a los productos personalizados: la evolución del regalo navideño corporativo

Dar un obsequio corporativo se ha convertido en una de las prácticas más comunes entre las empresas españolas, especialmente durante épocas festivas como la Navidad, como una manera de reconocer y agradecer el esfuerzo y la dedicación del equipo, la confianza de los clientes o el servicio de los proveedores más habituales. Sin embargo, los regalos de empresa han cambiado con el tiempo, y donde antes el jamón era la estrella; ahora la personalización de los regalos y la tecnología ganan cada vez más terreno. Con la época navideña a la vuelta de la esquina, MediaMarkt Business, división de MediaMarkt especializada en soluciones para empresas, resalta la importancia de la antelación y personalización en los regalos corporativos, como estrategia de fidelización y reconocimiento de marca.

IMPT y Desigual marcan un hito en la moda sostenible con una innovadora alianza en e-commerce ecológico

La nueva era del e-commerce consciente ha llegado para quedarse. Desigual, una de las marcas de moda más icónicas y creativas del panorama internacional, ha dado un paso decisivo hacia la sostenibilidad al incorporarse a IMPT, la plataforma líder en soluciones para compensar la huella de carbono. Esta colaboración representa un avance significativo en la creación de un comercio electrónico más responsable, donde los consumidores pueden seguir disfrutando de la moda única de Desigual mientras contribuyen activamente a la protección del medio ambiente.

La inteligencia artificial avanza a pasos agigantados: 1 de cada 3 empleados en Cataluña ya la utiliza diariamente

Este mes se cumplen exactamente dos años desde el lanzamiento de ChatGPT (30 de noviembre de 2022), un modelo de lenguaje avanzado que marcó el inicio de la democratización en el uso de la inteligencia artificial por parte de la ciudadanía, pero también de las empresas, que han visto en ella la oportunidad perfecta de generar disrupción en toda su cadena de valor. Desde entonces, la IA no solo ha demostrado su capacidad para revolucionar diversos sectores, sino que también ha ganado protagonismo como una herramienta clave en el ámbito laboral y, en concreto, en dos vertientes claras: en el empleo en sí y en el desempeño diario de los trabajadores (es decir, en las formas de trabajar).

CaixaBank entregará 34.000 regalos a niños en situación de vulnerabilidad a través del programa ‘El Árbol de los Sueños’

CaixaBank repartirá 34.000 regalos a niños en situación de vulnerabilidad de toda España gracias al programa ‘El Árbol de los Sueños’, una iniciativa solidaria que tiene por objetivo ayudar a que menores en situación de riesgo reciban estas Navidades el regalo que han pedido en sus cartas. La entidad llegará este año a casi 5.000 niños más que el año pasado.

Éste sitio web usa cookies, si permanece aquí acepta su uso. Puede leer más sobre el uso de cookies en nuestra política de cookies.