El sueño de obtener energía eléctrica eterna (fusión nuclear) está un poco más cerca

(Por José Manuel Perlado Martín, Universidad Politécnica de Madrid (UPM)) La fusión de núcleos atómicos libera grandes cantidades de energía. Es la reacción que hace brillar a las estrellas: dos núcleos de hidrógeno se unen y se convierten en helio, y en ese proceso una parte de la masa se convierte en energía. ¿Es posible “domar” esa reacción de forma que acabe siendo en el futuro una fuente de energía eléctrica para la humanidad?

Image description

La física nuclear nos dice que la unión de los núcleos de hidrógeno se logra cuando están a cientos de millones de grados. En esas condiciones la materia no es un sólido, ni un líquido, ni un gas. Los átomos se encuentran “descompuestos” en sus dos componentes: núcleo –el que queremos unir– y electrones. Así descompuesta la materia es volátil, y es necesario confinarla en alguna forma de recipiente. En el reactor experimental de fusión nuclear ITER, actualmente en construcción en Cadarache (Francia), la contención se logra mediante potentes campos magnéticos.

Pero hay otra estrategia: el denominado confinamiento inercial. En 1972, hace ahora medio siglo, el físico estadounidense John Nuckolls lo propuso como idea en un artículo de Nature. Por fechas similares, el premio Nobel Nikolai Basov llegó a conclusiones parecidas en la Unión Soviética, y poco después Robert Dautray, en Francia.

Se inició así una investigación que a lo largo de cinco décadas ha logrado muchísimos avances por y para la energía, pero también para otras áreas de la física y la tecnología, como los propios láseres. Pero es ahora, con los resultados publicados recientemente, cuando ha sido finalmente demostrada una de las ideas centrales de la fusión inercial.

Pulsos láser para crear microsoles

En la fusión por confinamiento inercial, cantidades muy pequeñas de materia, apenas miligramos de hidrógeno –específicamente de sus isótopos deuterio y tritio– contenidos en cápsulas de milímetros, deben alcanzar las mismas condiciones de temperatura y densidad que se dan en el Sol. ¿Cómo lograrlo? La respuesta está en un láser de alta energía y con pulsos de nanosegundos (0,000000001 segundos).

El láser deposita su energía en la capa externa de la cápsula con el hidrógeno, y provoca la expansión de dicha capa. Por “efecto cohete” –recordemos que en un cohete el gas sale hacia el suelo y el vehículo sube hacia el cielo–, el resto de la masa del blanco se comprime rápidamente hacia dentro: una implosión. Una vez logradas las condiciones de temperatura en el centro del hidrógeno, comenzarán en él las reacciones de fusión nuclear.

Persona sosteniendo una microcápsula de combustible frente a su ojo.
Microcápsula de combustible para fusión por confinamiento inercial como las que se usan en la instalación NIF. LLNL

Y ahora viene lo importante del resultado publicado el pasado 26 de enero en Nature y Nature Physics: demuestra que, tal y como se predijo hace 50 años, la energía cinética de los núcleos de helio producto de las reacciones de fusión se deposita, por colisiones, en la zona más externa con el hidrógeno más denso, calentándola a su vez y propagando desde el interior hacia el exterior esa onda térmica –como vemos al lanzar una piedra al agua–.

Naturalmente todos entendemos que, sin nada que siga “apretando”, la materia se expandirá y dejará de estar en las condiciones deseadas. ¡El tiempo de confinamiento dura solo 0,1 nanosegundos (0,0000000001 segundos)!

Pero si conseguimos repetir ese mecanismo diez veces por segundo, ¡ajá!: entonces tendremos energía y potencia suficientes como para pensar seriamente en una planta generadora de energía eléctrica.

Mucho más barato comprimir que calentar

Ahora bien: ¿por qué es necesario ese doble paso de “cerilla” en el centro y “propagación del fuego” hacia el exterior? Porque es mucho más “barato”, en términos de energía necesaria, comprimir que calentar una misma materia. Este es el secreto y la importancia del logro. Con este argumento teórico, ahora validado por los nuevos resultados, tiene sentido seguir soñando con esta forma de energía.

El artículo en Nature Physics recoge los experimentos y los resultados computacionales realizados en la National Ignition Facility (NIF) del Lawrence Livermore National Laboratory de EE. UU. junto a otros laboratorios, que demuestra después de 50 años que ese mecanismo es una realidad. NIF es un láser de 2 megajulios de energía en cada pulso distribuida en 192 haces y de algunos nanosegundos de pulso.

Lo que se ha publicado en enero demuestra la propagación de quemado en los experimentos de agosto de 2020 y febrero de 2021. En agosto de 2021 se alcanzaron valores aún superiores de energía, pero es un resultado que aún debe ser repetido.

Pero hay más. Lo que se necesita es que el proceso se repita de manera continuada en el tiempo y durante la vida del reactor. Y para eso el láser de esa energía debería ser repetitivo. La investigación está en ello, junto a la búsqueda de una optimización del mecanismo para que se use menos energía del láser.

Retos pendientes

Finalmente, quedan los retos que son comunes a las dos opciones de confinamiento: los materiales, los sistemas de refrigeración y la reproducción del tritio (isótopo inexistente en la naturaleza y que hay que fabricar in situ). Son retos que se están abordando, pero cuya perspectiva temporal se va a tiempos por encima del año 2050 y más.

La pregunta es: ¿compensa? La respuesta es: sí. Aunque el tiempo nos llevase a los 70 de este siglo (es decir un siglo después de su planteamiento) su “inagotabilidad” de combustible (el hidrógeno), su seguridad y su reducción de residuos nos lleva a la perspectiva de resolver, en combinación con otras fuentes, el problema de la energía del que, si no, hablarán, y hablarán con riesgo, nuestros nietos y biznietos.

La otra vía de lograr energía eléctrica de la fusión nuclear es la del confinamiento magnético, que tampoco arrojará resultados de manera inmediata. ITER es una instalación experimental no conectada a la red que va a permitir demostrar la ignición y quemado y la prueba de sistemas posteriormente aplicables al reactor final o DEMO. El arranque será sobre 2025-2026 y su funcionamiento real hacia los logros previstos, en 2035. DEMO se plantea en la Unión Europea en la frontera del 2050-2060.

Concluyo con una noticia que no por conocida es menos necesario difundir: España espera la financiación final para la construcción y funcionamiento de la instalación IFMIF-DONES, que debe demostrar la viabilidad de los materiales propuestos para las estructuras del reactor.


Este artículo fue publicado originalmente en el Science Media Centre España.


José Manuel Perlado Martín, Director del Instituto de Fusión Nuclear Guillermo Velarde, Universidad Politécnica de Madrid (UPM)

Este artículo fue publicado originalmente en The Conversation. Lea el original.

The Conversation

Tu opinión enriquece este artículo:

El stand de Cataluña en la feria internacional B-Travel 2025 gira en torno a la distinción como Región Mundial de la Gastronomía 2025

El stand de Cataluña en la feria internacional B-Travel 2025 gira en torno a la distinción de nuestro país como Región Mundial de la Gastronomía 2025. La directora general de Turismo, Cristina Lagé, ha inaugurado hoy este salón de experiencias turísticas que tiene lugar hasta el domingo 30 de marzo en el recinto Montjuïc de Fira de Barcelona. En su inauguración le han acompañado el director general de Turespaña, Miguel Ángel Sanz; el director general de Fira de Barcelona, ​​Constantí Serrallonga; el presidente de B-Travel, Martí Sarrate; la directora del salón, Marta Serra; y la directora de la Agencia Catalana de Turismo, Arantxa Calvera.

Empleados de AstraZeneca reforestan bosques en Sant Martí de Tous, Barcelona

AstraZeneca y Bosquea han celebrado la jornada de voluntariado 'hAZiendo horizonte juntos', en la que ha reunido un medio centenario de trabajadores de la compañía farmacéutica para contribuir a la regeneración de bosques en Sant Martí de Tous, Barcelona. Esta actividad marca un paso crucial en su proyecto de plantación de especies autóctonas en la zona, con el que esperan alcanzar un total de 2.200 árboles y compensar 190 toneladas de CO 2 a lo largo de los próximos 50 años.

Cataluña gestiona 55 planes de sostenibilidad turística con más de 200 millones de euros de inversión en todo el territorio

El consejero de Empresa y Trabajo, Miquel Sàmper, y el ministro de Industria y Turismo, Jordi Hereu, han abierto hoy una jornada interna para explicar el grado de ejecución de los 55 planes de sostenibilidad turística en destino que actualmente están en marcha en las comarcas catalanas. La sesión, celebrada en La Pedrera, también contó con la participación la directora general de Turismo de la Generalidad de Cataluña, Cristina Lagé, así como de la secretaria de Estado de Turismo, Rosario Sánchez, y de la directora general de Políticas Turísticas, Ana Muñoz, por parte del Ministerio.

La facturación de las empresas catalanas dedicadas a la industria 4.0 crece un 29,3% en cuatro años, hasta los 7.200 millones de euros

Las empresas catalanas dedicadas a la industria 4.0 facturan de forma agregada 7.197 millones de euros, un 29,3% más que en 2021, según se desprende de un estudio de ACCIÓ -la agencia para la competitividad de la empresa del Departamento de Empresa y Trabajo-. De acuerdo con este informe, el volumen de negocio de la industria 4.0 equivaldría ya al 2,6% del PIB catalán.

TRC abre nueva filial en Cataluña para impulsar la ciberseguridad y defensa poniendo al frente a Diego Presa

TRC, empresa líder en ciberseguridad con capital 100% nacional, anuncia la inversión en Cataluña con la apertura de TRC CAT. El principal objetivo es fortalecer la presencia y ofrecer soluciones avanzadas en el ámbito de la seguridad, fronteras inteligentes, ciberdefensa y transformación digital a las Administraciones Públicas y empresas privadas. TRC réplica así el exitoso modelo de cercanía iniciado en el País Vasco con TRC Bat.

Eurofins completa con éxito la adquisición de las operaciones de análisis clínicos de Synlab en España

Eurofins Scientific (EUFI.PA), líder científico global en pruebas bioanalíticas, con fuerte presencia y rápido desarrollo en el segmento de las pruebas de diagnóstico clínico y moleculares altamente especializadas, y productos de diagnóstico in vitro, completa con éxito la adquisición de las operaciones de análisis clínicos de Synlab en España que se ha hecho efectiva con fecha 31 de marzo de 2025.

Palo para Apple: Francia multa con 150 millones de euros a la compañía por abuso de posición dominante en la publicidad de apps móviles

La Autoridad de la Competencia de Francia ha multado a Apple con 150 millones de euros "por abusar de su posición dominante" en el sector para la distribución de aplicaciones móviles en dispositivos iOS y iPadOS entre abril de 2021 y julio de 2023 en relación con la implementación del sistema de Transparencia de Seguimiento de Aplicaciones (ATT) de la multinacional.

Éste sitio web usa cookies, si permanece aquí acepta su uso. Puede leer más sobre el uso de cookies en nuestra política de cookies.